

High Performance Wi-Fi Essentials

BICSI Rome

Products first, marketing second

• jussi@ekahau.com

Twitter: @JussiKiviniemi

Linkedin: linkedin.com/in/jussos

Agenda

 10 Essential Tips for High Performance Wi-Fi

 Some hands-on illustrations here & there

Q&A

Duration: 60 minutes

Let's NOT deploy this:

Tip #1:

Setting up Wi-Fi network is like...

Not High Capacity

High Capacity

Wired Ethernet

Tip #2:

To care or not to care?

"Worry later"

Little or no best practices, processes or tools

"Design Approach"

Interview network users, then design using best practices and tools.

[CATEGORY NAME]

Which guy would you like to be?

Life Cycle of a Wi-Fi Network

Tip #3:

Blueprint quality has a direct correlation with Wi-Fi design efficiency

Blueprint essentials

- Up-to-date
- White background
- Room numbers visible
- Wiring closets marked
- Existing AP placements marked
- If non-CAD, width / height between 1000px and 5000px is ideal.
- If CAD, ask blueprint manager to only give you wall / door / window infrastructure, not plumbing / furniture / plants

Tip#4: Aim for high data rates

Entering the network (authentication & association)

A Bartender Serves One Customer At a Time

- One device can only talk for a short period at a time...
- ... and then it's somebody else's turn

High Data rate is vital

- How long it takes for a device to send its transmission, depends mostly on data rate
- The higher the data rate of all the devices, the more everyone can transmit per second
- Data rate depends on signal strength / SNR

Contributors to low data rate

Noise

Channel Interference

Low client capabilities

What have we learned so far?

Why is this guy unhappy?

Tip#4: Not all client devices are equal

Not everybody should be let in

Just like no kids or intoxicated adults in your bar –

To maximize airtime, disable

- Legacy client access (802.11b/g)
- Low data rates in general

Low data rates

- You know those guys who pay with pennies?
- Low data rate clients are just like that: They slow down everyone in the network

Client device efficiency

3 spatial streams high efficiency

1 spatial stream low efficiency

Not all clients are transmitting data all the time

Tip#5: Is More Better?

Adding more bartenders doesn't always help!

Using 5GHz Wi-Fi is like having skilled bartenders

Reduce Channel Overlap by Strategic AP Placement

There's Always Some Overhead Bicsi

- Waiting for your turn (Clear Channel Assesment)
- Mixing the drink (Management traffic)
- Paying for the drink (Acknowledgement)
- Phrases like
 - "How are you", "good thanks" (Probe request / response)

Complex Drinks Are Like Extra SSIDs...

 Mixing complex drinks eats up the usable "airtime"

Drink complexity

_
Ð
7
Ð
Ţ
b
9
Ŧ
0
#

Ş

				i .		
Number of APs on Channel*	1	2	3	4	Number 5	of SSIDs 6
1	3.22%	6.45%	9.67%	12.90%	16.12%	19.35%
2	6.45%	12.90%	19.35%	25.80%	32.25%	38.70%
3	9.67%	19.35%	29.02%	38.70%	48.37%	58.04%
4	12.90%	25.80%	38.70%	51.59%	64.49%	77.39%
5	16.12%	32.25%	48.37%	64.49%	80.62%	96.74%
6	19.35%	38.70%	58.04%	77.39%	96.74%	100.00%

Tip#6: The spectrum police academy

What Can Interfere with Wi-Fi

- Microwave Ovens
- Cordless phones
- Wireless cameras
- Baby monitors
- Wireless audio systems
- Bluetooth
- Radar
- GSM networks!

Tools to Fight Interference

Spectrum analyzer

Site survey tool

A hammer ;)

Two types of Spectrum Analyzers

- External device
 - Floor level measurement
 - Can be taken anywhere
- Built into access point
 - Always out there
 - Measures where the AP is (=ceiling)

CSI it like Horatio

1. What's Wi-Fi, what's not

2. How bad is the interferer – amplitude, duty cycle and channel

3. Is the interferer constant or periodic in nature?

Wi-Fi vs Not Wi-Fi

Wi-Fi

Not Wi-Fi

Periodic interferer

Questions before acting

- Is the interferer impacting your network?
- Can the interferer be eliminated?
- Will adjusting the network fix the problem?
- Is there a Wi-Fi substitute for the interferer?
- Can you break it ;)

Tip#8: "Site survey just slows down everything"

Survey Phase

Question

Predictive site surveys

(network plan, simulation)

Pre-Deployment site surveys

(AP on a stick)

Post-Deployment site surveys

(validation)

"How many APs? Where?

Power? Channels? Antennas"?

"What does the real world RF look like"

"Does this network actually work?"

Periodic site surveys

(health check)

"Does it **still** work? What has changed?"

Survey Happiness Scale Jim Carrey Richard Gere Paris Hilton

No surveys

Post-deployment validation

Predictive

• Periodic check-ups, AP on a stick

Survey Type The process

Result

Predictive Survey	Simulate RF by defining walls,	Simulated heatmaps
riedictive Survey	placing simulated APs	of capacity & coverage
Passive Survey	Walk around, collect beacons and probes, measure things like Signal strength, Interference, SNR for all APs.	SNR, RSSI, interference heatmaps for all APs
Active Survey	Walk, connect to the network, test things like packet loss, RTT, association	Heatmaps and deeper analysis like roaming,
Throughput Survey	Measure throughput (Mbit/s, # of packets) and jitter, often spot checks	Momentary capacity analysis, voice analysis
Spectrum Survey	Detect all RF energy / interference	Interferers, duty cycle, etc.

Tip#9: High Capacity Means Asking the Right Questions

Calculating Capacity

Number of Thirsty People?

- Number of wireless users
- Number of devices per user
 - One often active at a time
 - Idle devices eat some capacity, too
- The device type of the user
 - 802.11ac/n/g/a/b?
 - Number of spatial streams supported
 - MU-MIMO capable?

3	Capacity Requirements
In my ne	etwork, there are
15	11ac AC Laptop
30	11n Laptop
20	11bg VoIP Phone
100	11n Smartphone
35	11n Tablet
	Peak Hour Usage:
Add Wi-l	Fi Devices:
35	11n Tablet

How Thirsty Are the Customers?

Applications

- What applications are the users primarily using
- How frequently are the applications used

Calculating capacity need

Excel based tools / calculators

- Calculates the required number of Aps
- Can go to great detail
- Revolution Wi-Fi capacity calculator

Map-based tools

- Calculates number of APs
- Suggests AP placement and channels
- Predicts coverage & capacity
- Ekahau Site Survey Pro

Process for Designing High Capacity Wi-Fi

Folks want beer.	1.	Business need	Wireless access everywhere
They want it cold and fast.	2.	Tech Requirements	Every user 5MB/sec
Enough taps & bartenders.	3.	Infrastructure	# of access points (APs)
Placement of counters, taps.	4.	Predictive design	AP placement & antennas
Build the bar, buy the beer.	5.	Deployment	Set up the network
Check that the taps work.	6.	Verification	RF walk—through site survey
Keep things clean & working.	7.	Maintenance	Keep network running

Tip#10: Learn More

Summary

Thank you!

Twitter: @JussiKiviniemi

Linkedin: linkedin.com/in/jussos

