Murat Cudi Erentürk
Gandalf Consulting and Software Ltd.

- 38 Planned City Hospitals
- 3 Hospitals (3000+ beds) operational
- Public Private Partnership Model (PPP)
- Total of 30,000 beds

Goals

- Centralize Healthcare in each province
- Government focuses on medical services only
- Central Service Provider (SPV) and sub contractors responsible for hard AND soft services
- Monthly payments as rent and service fees, no upfront payments
- Contracted for 25 years

PPP Model

- SPV
 - Lasts for 25 years, No operations
- FMCO
 - Broker for all Services provided, can provide some of the services
- Medical Services
 - Imaging, Sterilization, Lab etc
- Support Services
 - Catering, Cleaning, Waste Disposal etc

Top level Stakeholders

Ministry of Health (MoH)

Focus: Citizen Welfare

SPV

Focus: Minimize Penalties

Regional Healthcare Trusts

Focus: Healthcare

Professionals

Financers

Focus: Regular Payments

- Too many device types
 - **Typical:** Desktops, Printers, Network Equipment (Wired AND wireless), Servers, Telephony
 - Not so typical: barcode/RFID readers-printers, Passive RFID readers, Access Control Systems, Security Cams, Radio Infra
 - Hospital Specific: Nurse Calling Systems, Medical Imaging Systems, Lab equipment, Medical PC's, Medical Displays, Medical Operation Cameras

- Too many Service Level Agreements
 - SPV needs to fulfill 650+ performance parameters monthly
 - 64 IT related very strict performance parameters
 - Ex: HIMS Application needs to display first page of information in 4 seconds on ALL end user devices
 - Fines are deducted from monthly fees (huge impact)

- Medium Sized Hospital
 - 350,000+ m2
 - 8000+ rooms
 - 4 Interconnected buildings
 - 1500 Beds, 15,000 daily visitors

- Large Sized Hospital
 - 1,000,000+ m²
 - 24,000+ rooms
 - 7 Interconnected buildings
 - 3750 Beds,80,000 daily visitors
 - Municipality had to revise city plan to accommodate daily traffic

In office environments, when IT fails, company loses money...

- Hospital Paradigms
 - If an IT device fails, quick replace might not be possible

"The general who wins the battle makes many calculations in his temple before the battle is fought."

Sun Tzu

- Unique Location ID
 - There should be a centralized repository with change management process in place.
 - ISO 14763-2-1 or TIA 606B can be used
 - Ex: AD02+6F_02:01 (AD-02 Cabinet, 6th row, 2nd chassis, port 1)
 - Needs extending for non-networking scenarios

- Unique Device ID
 - RFID ID's can be used (EPCGlobal Gen 2 Version 2)
 - Randomly created numerical IDs easier to handle
- Recommendations
 - Using categorical naming in front of ID does not scale
 - Using Location as part of ID brings maintenance cost
 - Vendor Serial ID's seen to collide

- Unique Asset Classification ID
 - Use same classification for ALL Devices in Facility
 - Omniclass, Uniclass can be used but needs extending
- Recommendations
 - Some regulations require local or other Healthcare oriented standards (UMDNS, GUIDID etc)
 - Maintaining Mapping between classifications is a large maintenance cost

- Unique Manufacturer, Model ID
 - Manual entries create mistakes hard to find (Compaq, Compac)
- Recommendations
 - Create your own table for vendor IDs and models with descriptions if possible

- Recommendations (less than 1000 assets)
 - Use Spreadsheet software to manage your assets
 - Fix your columns and limit acceptable entries
 - Make sure everybody in the team fills the data properly
 - Device IDs can be rule based (class or locations)
 - Ex: SB01L02T3-48 (Switch in Building 1, Leve 1, Telecom room 3, 48 ports)
 - Use manual entry for Manufacturer and Model identifiers
 - Use manual entry for Asset Status (Operational, stock etc)

- Recommendations (more than 1000 assets)
 - Use centralized Asset Management Software
 - Assign Unique Device ID (Random, EPC)
 - Use Separate Location ID linked to Device ID (ISO 14763-2-1, TIA 606B or other)
 - Use Separate Category ID linked to Device ID (OmniClass etc)
 - Use Separate Manufacturer, model IDs linked to Device ID

- Recommendations (more than 1000 assets)
 - Integration with other management systems is inevitable
 - Engage early and agree on data exchange standards, frequency
 - Do not use Unique ID's from other parties as your own

- ESS network
 - Separation of ESS and IT networks physically is recommended
 - Anything that does not need to scale with usage should be in ESS
 - Patient data should not pass through ESS network
 - Cabling is dependent on many factors, lots to consider
 - BICSI 005 ESS is very good resource for ESS planning

- IT network Planning
 - Variable bandwidth communications (ex: Wi-Fi) and end-user devices
 - Cat-6A cabling should be minimum requirement, Shielded
 Cat-7 is recommended for medical imaging equipment
 - Perform rigorous cable tests

- Telecommunication and Equipment rooms
 - Generally shared for ESS and IT networks
 - Treat these rooms as public spaces!
 - Secure all cabling in trays and while entering cabinets
 - Secure grounding connections
 - Use per-cabinet inline UPS's even if there is a building UPS
 - Centrally monitor temperature, humidity, power inside EACH cabinet
 - Inspect rooms regularly during operations

- Building Cabling
 - Ensure all cable pathways are secured
 - Follow best practices for cable placement (BISCI 002 is recommended)
 - When using newer PoE devices (60W+) use CAT 7 or above, if you can't, prepare for cable heating

- Data Center Placement
 - 2 Active-Active Data Centers were required for Hospitals in Turkey
 - Make sure technical personnel can reach to both DCs in less than 5 minutes
 - Make sure large equipment can be transported inside the hospital to and from data centers

- Data Center Placement
 - Make sure Data Center
 - is NOT above, below or alongside car parks
 - is NOT near strong electromagnetic devices (Imaging equipment, Transformers etc)
 - Is NOT adjacent to piping on from sides and inside walls
 - DO NOT share NOC space with Data Center support spaces

- Data Center Equipment
 - Ventilation
 - Plan positive air pressure at all times inside Data Centers
 - Make sure External Air inlets are separate from hospital ventilation system and away from exhaust system.
 - Exterior Air Conditioning units should be secured from tampering
 - Fire Suppression
 - Separate gas exhaust system should be considered since fire suppression agents can be harmful for patients

- Data Center Equipment
 - Cabinets and Server Placement
 - Different service providers may need to put equipment inside Data
 Centers
 - Avoid physical devices not controlled by Hospital IT if possible
 - Provide separate cabinets or aisle containments with access control

- Timelines
 - Not every part of the hospital will be ready for operation at the same time
 - Start from core (typically one of data centers) extend outwards

Building Recommended Practices

Data Center

- Be sure to maintain physical security during construction
- Do not expect clean electricity if you are under time pressure
- Having UPS does not mitigate all electricity problems
- Building network cable performance may be unreliable before operation
- Maintain positive air pressure at all times inside Data Centers

- Pre-Commissioning Considerations
 - Equipment testing takes time and planning
 - Every service provider tests their own equipment
 - What needs to be tested for integrated operation?
 - End-User Device Placement
 - Be ready to change end user device locations considerably
 - Placed and tested end user equipment will not stay that way

Operational Recommended Practices

- Identity Management is key!
 - Centralized ID management is a must
 - Who owns identity management?
 - Use Unique User IDs
 - Plan carefully for central identity management and distributed access controls

Operational Recommended Practices

- Time Source
 - There is a status 2 Atomic Clock requirement in RFP
 - Synchronize all clocks from a central source
 - IT equipment
 - Security Cameras
 - CRAC Units
 - Access Control
 - Intrusion Detection Systems

Operational Recommended Practices

- Asset Management
 - Used for Vendor Management,
 Maintenance planning
- Configuration Management
 - Used for change management
- Different group of assets will need to be managed in two perspectives

Dynamic Equipment Properties

Monitoring Recommended Practices

Level 1

(When needed)

Unmonitored workloads

SLA management with Help Desk

Level 2

(Periodic)

Summary reporting of workloads

P1,P2 Incident monitoring

Level 3

(Realtime)

Realtime Monitoring of workloads All Incidents, Requests, changes monitored

